adalahDNA yang melakukan transkripsi sedangkan DNA antitemplate adalah pasangan dari DNA template. Ada 3 subtahap transkripsi yakni: a. Inisiasi adalah proses penempelan enzim RNA polimerase pada promotor (bagian DNA sebagai titik awal transkripsi). Rantai DNA yang menjadi cetakan disebut template (lihat gambar 17). b. Elongasi adalah proses
Salahsatu hasil transkripsi dna adalah rna struktural yaitu, a mrnab trnac rrnad mirnae irna. 1.
TranskripsiDNA: Dari DNA Menjadi RNA. Pada transkripsi, DNA disalin ulang menjadi RNA. Pada dasarnya, kedua jenis molekul ini serupa. Baik DNA maupun RNA keduanya adalah polimer asam nukleat dengan tulang punggung gula fosfat dan tiap satu unit monomer memiliki gugus basa. Perbedaan DNA dari RNA. Terdapat dua perbedaan penting antara DNA dan RNA.
Prosessintesis protein terdapat 2 tahap, adalah: Download Gambar. Source: kumparan.com. Urutan dasar dna dalam proses transkripsi. Rna ialah hasil dari transkripsi dari suatu fragmen dna, sehingga rna sebagai polimer yang jauh lebih pendek apabila dibandingkan dengan dna. 1.) inisisasi di tahapn ini enzim rna polymerase menyalin gen yang
Marikita lihat lebih dekat apa yang terjadi selama transkripsi. Ikhtisar transkripsi RNA. Transkripsi adalah langkah pertama dalam ekspresi gen. Selama proses ini, urutan DNA dari suatu gen disalin menjadi RNA. Sebelum transkripsi dapat berlangsung, heliks ganda DNA harus rileks dekat dengan gen yang sedang ditranskripsi.
apakah susu ultra milk full cream bisa menambah berat badan. - Protein adalah nutrisi yang dibutuhkan tubuh dalam jumlah besar karena membantu proses pembuatan energi dan juga sebagai pembangun beberapa organ tubuh makhluk hidup. Darimana kita memperoleh protein? Tentu saja dari makanan, namun tubuh kita juga dapat membentuk protein yang telah kita bahas pada metabolisme protein, protein terdiri dari ratusan bahkan ribuan asam amino tergantung pada jenis proteinnya. Pada materi kali ini kita akan mempelajari bagaimanakah pembuatan protein dalam tubuh manusia? Sintesis protein dalam tubuh terdiri dari 3 tahapan yaitu transkripsi dan translasi. Baca juga Hati-hati, Protein Urine Tinggi Bisa Jadi Tanda Penyakit Ginjal Transkripsi NURUL UTAMI Pembukaan ikatan basa DNA Sintesis protein dimulai dengan menyalin urutan DNA yang akan diekspresikan dalam inti sel. Proses transkripsi dimulai dari pemisahan ikatan hidrogen antar basa-basa nitrogen pada DNA oleh enzim helikase. Hal ini seperti kamu membuka ritlsleting, kamu membukanya dan memisahkan basa-basa nitrogen yang saling berikatan. Ritsleting DNA yang terbuka ini adalah cetakan dari protein yang akan dibuat nanti. NURUL UTAMI RNA polimerase yang sedang bekerja RAIMARDA Dua proses transkripsi dan translasi ialah dalam hal ini untuk mensintesis protein dari cetakan DNA lalu menjadi RNA yang nanti akan mengahasilkan hasil akhir berupa polipeptida. Karena DNA tidak bisa keluar dari nukleus, DNA kemudian memproduksi mRNA menggunakan enzim RNA polimerase. Kemudian mRNA akan menempel pada cetakan tersebut dengan menyatukan basa nitrogennya dengan basa nitrogen DNA cetakan. Dilansir dari BBC, mRNA memiliki basa nitrogen yang sama, kecuali timin yang digantikan oleh juga Proses Metabolisme Protein Bagaimana Tubuh Mencerna Protein? mRNA kemudian membawa “cetak biru” pembuatan protein keluar dari inti sel masuk ke cairan sitoplasma dan menempel pada ribosom. Translasi mRNA yang masuk ke ribosom kemudian mengalami proses translasi, translasi adalah proses pembacaan kode genetik cetak biru DNA. Dilansir dari Science Learning Hub, tRNA pada ribosom membaca urutan asam amino dalam mRNA untuk dibuat menjadi protein baru. Satu tRNA membaca 3 basa pada mRNA yang disebut sebagai kodon. tRNA yang telah membaca informasi genetik, kemudian keluar dari ribosom untuk membawa asam amino yang sesuai. Asam amino tidak disintesis dalam proses ini, tetapi didapatkan dari hasil metabolisme protein. Baca juga 5 Kandungan Gizi Jamur Pangan, dari Protein hingga Serat Dilansir dari National Center for Biotechnology Information, tRNA mengikat asam amino yang dibutuhkan dengan energi ATP. Asam amino kemudian diikat dengan ikatan peptida kovalen oleh enzim peptidil transferase membentuk polipeptida dan dibantu oleh energi dari tRNA. Polipeptida ini kemudian dilipat sedemikian rupa sehingga membentuk satu protein yang fungsional. Jadi dapat disimpulkan bahwa protein yang dikonsumsi oleh manusia, dicernah menjadi asam amino. Asam amino tersebut kemudian digunakan kembali untuk membuat protein dalam bentuk lain yang dibutuhkan oleh tubuh. Baca juga Asupan Protein di Pagi Hari, Efektif Jaga Massa Otot Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel.
BerandaSalah satu hasil transkripsi DNA adalah RNA strukt...PertanyaanSalah satu hasil transkripsi DNA adalah RNA struktural yaitu ....Salah satu hasil transkripsi DNA adalah RNA struktural yaitu .... mRNA tRNA rRNA miRNA iRNA Jawabanpilihan jawaban yang benar adalah jawaban yang benar adalah A. PembahasanTranskripsi merupakan tahap pertama dari proses sintesis protein yang nantinya dilanjutkan dengan tahap kedua yaitu translasi. Proses transkripsi membutuhkan bantuan dari enzim yang disebut RNA polimerase. Enzim ini berfungsi untuk membuka rantai ganda DNA dan membentuk rantai RNA dari cetakan template DNA yang ingin diterjemahkan. DNA yang ditranskripsi disebut DNA sense/kodogen. Hasil transkripsi berupa mRNA kodon. Dengan demikian, pilihan jawaban yang benar adalah merupakan tahap pertama dari proses sintesis protein yang nantinya dilanjutkan dengan tahap kedua yaitu translasi. Proses transkripsi membutuhkan bantuan dari enzim yang disebut RNA polimerase. Enzim ini berfungsi untuk membuka rantai ganda DNA dan membentuk rantai RNA dari cetakan template DNA yang ingin diterjemahkan. DNA yang ditranskripsi disebut DNA sense/kodogen. Hasil transkripsi berupa mRNA kodon. Dengan demikian, pilihan jawaban yang benar adalah A. Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!2rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!©2023 Ruangguru. All Rights Reserved PT. Ruang Raya Indonesia
Kode genetik sering disebut “rencana induk” karena berisi instruksi yang dibutuhkan sel untuk mempertahankan dirinya sendiri. Kita sekarang tahu bahwa ada lebih dari instruksi ini dari sekedar urutan huruf dalam kode nukleotida. Sebagai contoh, sejumlah besar bukti menunjukkan bahwa kode ini adalah dasar untuk produksi berbagai molekul, termasuk RNA dan protein. Penelitian juga menunjukkan bahwa instruksi yang disimpan dalam DNA “dibaca” dalam dua langkah transkripsi dan translasi. Dalam transkripsi, sebagian dari template DNA untai ganda menimbulkan molekul RNA untai tunggal. Dalam beberapa kasus, molekul RNA itu sendiri adalah “produk jadi” yang memenuhi fungsi penting di dalam sel. Namun, seringkali transkripsi molekul RNA diikuti oleh langkah translasi, yang pada akhirnya menghasilkan produksi molekul protein. Transkripsi Mikrograf elektron menunjukkan untaian kromatin hitam pada latar belakang abu-abu. Benang kromatin terlihat seperti garis vertikal tipis. Garis horizontal bercabang dari garis vertikal ke kiri dan kanan; garis-garis horizontal menyerupai cabang-cabang pohon pinus. Struktur melingkar hitam gelap di ujung setiap cabang adalah tombol terminal dan berisi mesin pengolah RNA. Proses transkripsi dapat divisualisasikan dengan mikroskop elektron, pada kenyataannya, pertama kali diamati menggunakan metode ini pada tahun 1970. Dalam mikrograf elektron awal ini, molekul DNA muncul sebagai batang’, dengan banyak cabang’ RNA bergabung bersama. . Ketika DNAse dan RNA se enzim yang mendegradasi DNA dan RNA, masing-masing ditambahkan ke molekul, penerapan DNAse menghilangkan struktur batang, sedangkan penggunaan RNA menghilangkan cabang. DNA beruntai ganda, tetapi hanya satu untai yang berfungsi sebagai cetakan untuk transkripsi pada waktu tertentu. String template ini disebut string non-coding. Unstpped strand disebut coding strand karena urutannya akan sama dengan molekul RNA baru. Pada kebanyakan organisme, untai DNA yang berfungsi sebagai cetakan untuk satu gen dapat menjadi untai non-variabel untuk gen lain dalam kromosom yang sama. Proses transkripsi Proses transkripsi dimulai ketika enzim yang disebut RNA polimerase RNA pol mengikat untai DNA template dan mulai mengkatalisis produksi RNA komplementer. Polimerase adalah enzim besar yang terdiri dari sekitar selusin subunit, dan ketika mereka aktif dalam DNA, mereka sering menjadi kompleks dengan faktor lain juga. Dalam banyak kasus, faktor-faktor ini menunjukkan gen mana yang ditranskripsi. Tahapan transkripsi Langkah pertama dalam transkripsi adalah inisiasi, ketika RNA pol bergabung dengan DNA gen saat ini dalam urutan khusus yang disebut promotor. Pada bakteri, promotor umumnya terdiri dari tiga unsur urutan, sedangkan pada eukariota, ada hingga tujuh unsur. Pada prokariota, sebagian besar gen memiliki urutan yang disebut kotak Pribnow, dengan urutan konsensus TATAAT terletak sekitar sepuluh pasangan basa dari situs yang berfungsi sebagai lokasi inisiasi transkripsi. Tidak semua kotak Pribnow memiliki urutan nukleotida yang tepat ini ; nukleotida ini hanya yang paling umum ditemukan di setiap situs. Meskipun substitusi memang terjadi, setiap kotak, bagaimanapun, sangat mirip dengan konsensus ini. Banyak gen juga memiliki urutan konsensus TTGCCA pada posisi 35 basa hulu dari situs awal, dan beberapa memiliki apa yang disebut unsur hulu, yang merupakan wilayah kaya AT dari 40 hingga 60 nukleotida di hulu yang meningkatkan laju transkripsi. Dalam kedua kasus, setelah mengikat, “enzim inti” dari RNA pol mengikat subunit lain yang disebut subunit sigma untuk membentuk holoezim yang mampu membuka heliks ganda DNA untuk memfasilitasi akses ke gen. Subunit sigma menyampaikan spesifisitas promotor ke RNA polimerase; yaitu, ia bertanggung jawab untuk memberi tahu RNA polimerase di mana harus mengikat. Ada beberapa subunit sigma berbeda yang mengikat promotor yang berbeda dan dengan demikian membantu menghidupkan dan mematikan gen saat kondisi berubah. Promotor eukariotik lebih kompleks daripada rekan prokariotik mereka, sebagian karena eukariota memiliki ketiga kelas RNA polimerase yang disebutkan di atas yang mentranskripsi set gen yang berbeda. Banyak gen eukariotik juga memiliki urutan penambah, yang dapat ditemukan pada jarak yang cukup jauh dari gen yang mereka pengaruhi. Urutan penambah mengontrol aktivasi gen dengan mengikat protein aktivator dan mengubah struktur 3-D DNA untuk membantu “menarik” RNA pol II, sehingga mengatur transkripsi. Karena DNA eukariotik dikemas secara hermetis seperti kromatin , transkripsi juga memerlukan sejumlah protein khusus yang membantu membuat untai cetakan dapat diakses. Penghentian transkripsi Urutan terminasi Rho-independen menghentikan transkripsi. Terminator independen Rho berisi pengulangan terbalik diikuti oleh ekor adenin. Ketika pengulangan terbalik ditranskripsi pada akhir urutan mRNA, pengulangan terbalik dapat membentuk loop jepit rambut, menyebabkan RNA polimerase menghentikan transkripsi. Ketika ikatan putus antara pasangan basa adenin-urasil di ekor adenin, mRNA dilepaskan dan transkripsi terganggu. Urutan pengulangan terbalik pada akhir gen memungkinkan urutan RNA yang baru ditranskripsi untuk melipat menjadi loop jepit rambut. Ini mengakhiri transkripsi dan merangsang pelepasan untai mRNA dari mesin transkripsi. Urutannya Urutan terminator ditemukan di dekat ujung urutan non-coding. Bakteri memiliki dua jenis urutan ini. Dalam terminator rho-independen, urutan pengulangan terbalik ditranskripsi; mereka kemudian dapat melipat kembali diri mereka sendiri dalam loop jepit rambut, menyebabkan RNA pol berhenti dan transkripsi dilepaskan. Di sisi lain, terminator yang bergantung pada rho menggunakan faktor yang disebut rho, yang secara aktif melepaskan hibrid DNA-RNA yang terbentuk selama transkripsi, sehingga melepaskan RNA yang baru disintesis. Pada eukariota, penghentian transkripsi terjadi dengan proses yang berbeda, tergantung pada polimerase yang digunakan. Untuk gen pol I, transkripsi dihentikan menggunakan faktor terminasi, melalui mekanisme yang mirip dengan terminasi rho-dependent pada bakteri. Transkripsi gen pol III berakhir setelah menyalin urutan penghentian yang mencakup peregangan poliurasil, dengan mekanisme yang menyerupai penghentian prokariotik rho-independen. Namun, penghentian transkrip pol II lebih kompleks. Transkripsi gen pol II dapat berlanjut untuk ratusan atau bahkan ribuan nukleotida di luar akhir urutan noncoding. Untai RNA kemudian dibelah oleh kompleks yang tampaknya berasosiasi dengan polimerase. Pembelahan tampaknya digabungkan dengan penghentian transkripsi dan terjadi dalam urutan konsensus. MRNA pol II matang dipoliadenilasi pada ujung 3 , menghasilkan ekor poli A; proses ini mengikuti pembagian dan juga dikoordinasikan dengan penghentian. Baik poliadenilasi dan terminasi menggunakan urutan konsensus yang sama, dan saling ketergantungan proses ditunjukkan pada akhir 1980-an oleh karya beberapa kelompok. Sekelompok ilmuwan yang bekerja dengan gen globin tikus menunjukkan bahwa pengenalan mutasi pada urutan konsensus AATAAA, yang diketahui diperlukan untuk penambahan poli A, menghambat poliadenilasi dan penghentian transkripsi. Mereka mengukur tingkat penghentian dengan menghibridisasi transkrip ke mutan urutan konsensus poli A yang berbeda dengan transkrip tipe liar, dan dapat melihat penurunan sinyal hibridisasi, menunjukkan bahwa penghentian yang tepat dihambat. Oleh karena itu, mereka menyimpulkan bahwa poliadenilasi diperlukan untuk terminasi Logan et al., 1987. Kelompok lain memperoleh hasil serupa dengan menggunakan sistem mono virus, SV40 virus simian 40. Mereka memperkenalkan mutasi di situs poli A, menyebabkan mRNA terakumulasi ke tingkat yang jauh di atas tipe liar Connelly dan Manley, 1988. Hubungan eksisi dan pemutusan hubungan Hubungan yang tepat antara spin-off dan penghentian belum ditentukan. Satu caral mengasumsikan bahwa pemisahan itu sendiri memicu penghentian; lain mengusulkan bahwa aktivitas polimerase dipengaruhi ketika melewati urutan konsensus di situs pembelahan, mungkin melalui perubahan terkait faktor pengaktif transkripsi. Oleh karena itu, penelitian di bidang transkripsi prokariotik dan eukariotik masih difokuskan untuk mengungkap detail molekuler dari proses kompleks ini, data yang akan memungkinkan kita untuk lebih memahami bagaimana gen ditranskripsi dan dibungkam.
Jakarta - Apakah detikers tahu apa kepanjangan dari DNA? DNA adalah singkatan dari Deoxyribo Nucleic merupakan molekul yang memuat seluruh instruksi genetik yang dibutuhkan oleh semua organisme dalam seluruh siklus hidupnya. Informasi genetik yang terdapat dalam DNA diturunkan oleh orang tua atau induk ke generasi berikutnya melalui DNA adalah berupa dua rantai polinukleotida yang berbentuk seperti tangga berpilin. Dikutip dari DNA Barcode Fauna Indonesia tulisan M Syamsul Arifin Zein dan Dewi Malia Prawiradilaga, setiap anak tangga ini terdiri atas pasangan basa adenine A, guanine G, cytosine C, dan thymine T.Adenin selalu berpasangan dengan thymine. Cytosine selalu berpasangan dengan tersimpan di dalam inti sel, sehingga disebut genom DNA inti. Contohnya, genom DNA inti manusia tersusun sekitar tiga miliar pasang basa dengan panjang kira-kira 3 dibandingkan dengan ukuran sel, maka panjang DNA bisa mencapai 300 ribu kali diameter sel yang mengandungnya. Meski demikian, DNA tetap berada dalam inti sel karena mengalami pengepakan sedemikian DNASebagai materi genetik, DNA memiliki fungsi sebagai berikut1. DNA harus mampu menyimpan informasi genetik dan bisa meneruskan informasi tersebut secara tepat keturunan makhluk hidup dari generasi ke generasi. Fungsi ini adalah fungsi genotipik yang dilakukan melalui DNA bertugas mengatur perkembangan fenotipe organisme. Maksudnya, materi genetik harus mengarahkan pertumbuhan dan diferensiasi organisme mulai dari zigot sampai individu ini adalah fungsi fenotipik yang dilakukan melalui ekspresi DNA sewaktu-waktu harus bisa mengalami perubahan sehingga organisme yang bersangkutan dapat beradaptasi dengan kondisi lingkungan yang adanya perubahan seperti itu, maka evolusi tidak akan pernah berlangsung. Fungsi ini adalah fungsi evolusioner yang dilakukan melalui DNA dan RNADikutip dari Praktis Belajar Biologi untuk Kelas XII SMA/MA IPA oleh Fictor Ferdinand P dan Moekti Ariebowo, perbedaan DNA dan RNA terletak di letak, bentuk rantai, kadar, fungsi, basa nitrogen, dan gula di dalamnya. Seperti ini pemaparannya1. LetakDNA berada dalam nukleus dan plastidaRNA berada dalam nukleus, matriks, sitoplasma, plastida, mitokondria, dan ribosom2. Bentuk rantaiDNA double helixRNA tunggal, ganda tidak berpilin3. KadarDNA tetapRNA tidak tetap4. FungsiDNA pengendali faktor keturunan dan sintesis proteinRNA berperan dalam aktivitas sintesis protein RNA5. Basa nitrogenDNA purin adenine dan guanine serta pirimidin timin dan sitosinRNA purin adenine dan guanine serta pirimidin urasil dan sitosin6. GulaDNA deoksiribosaRNA ribosa Simak Video "Lahir Bayi Pertama di Inggris yang Punya DNA dari 3 Orang" [GambasVideo 20detik] nah/faz
TRANSKRIPSI Transkripsi dari bahasa Inggris transcription adalah proses penyalinan kode-kode genetika yang ada pada urutan DNA menjadi molekul RNA. Transkripsi adalah bagian dari rangkaian ekspresi genetik yang nantinya akan muncul sebagai fenotipe. Urutan nukleotida pada salah satu untaian molekul DNA digunakan sebagai cetakan untuk sintesis molekul RNA yang komplementer. Molekul RNA yang disintesis dalam proses transkripsi pada garis besarnya dapat dibedakan menjadi 3 kelompok molekul RNA, yaitu mRNA messenger RNA, tRNAtransfer RNA, dan rRNA ribosomal RNA. Proses Transkripsi berlangsung di dalam inti sel nukleus atau di dalam matriks pada mitokondria dan plastida. Proses transkripsi adalah proses sintesa RNA dari template DNA, bedanya basa RNA adalah Urasil U sebagai gantinya timin T. Jadi bila dalam untai DNA A maka hasil transkripsinya adalah U dan bila pada DNA T, maka pada RNA menjadi A, bila pada DNA C maka hasil transkripsi pada RNA adalah G dan sebaliknya. Contoh untai DNA AAACCGGCAAAA maka untai molekul RNA hasil transkripsi adalah RNA UUUGGCCGUUUURNA adalah untai tunggal, komplementernya DNA. RNA adalah pembawa pesan DNA urutan basa pada RNA dibaca tiga-tiga disebut kodon, mendiktekan jenis asam amino yang dikode pada tahap translasi. Jadi informasi genetik ditulis sebagai kodon dan ditranslasikan ke dalam rangkaian urutan asam aminoEnzim untuk mentranskripsi DNA menjadi RNA disebut RNA polymerase. Proses transkripsi dimulai ketika enzim RNA polimerase berkontak dengan protein pada DNA yang disebut promotor. Setelah tahap transkripsi dimulai dari proses yang disebut inisiasi, yaitu ketika enzim RNA polimerase bergabung dengan tiap gen, promotor hanya mengkode untuk mentranskripsi satu untai DNA saja. Bagian yang ditranskripsi berbeda antara satu gen dengan gen lainnya. Tahap transkripsi berikutnya adalah pemanjangan RNA, RNA terpisah atau menjauh dari DNA templatenya, sehingga kedua untai DNA dapat bergabung lagi, dilanjutkan dengan tahap ketiga transkripsi adalah terminasi, yaitu ketika RNA polimerase mencapai urutan basa tertentu yang disebut terminator. Proses transkripsi menghasilkan tiga jenis RNA, yaitu yang pertama adalah RNA yang mengkode urutan asam amino, disebut RNA pembawa atau mesenger disingkat mRNA, dan dua jenis RNA, yaitu transfer RNA disingkat tRNA sebagai molekul penerjemah dan ribosom disingkat rRNA yang menyediakan diri sebagai tempat atau pabrik pembuat protein, semuanya berperanan dalam proses yang dihasilkan bukan hanya untai dari informasi genetik dari DNA, tetapi masing-masing ujungnya diperpanjang dengan untai selain berita genetik pada proses transkripsi yang diperlukan untuk proses translasi genetik ditranslasi dalam sitoplasma. Pada prokariot semua transkripsi dan translasi terjadi dalam sitoplasma. MEKANISME TRANSKRIPSI PADA PROKARYOT Transkripsi pada dasarnya adalah proses penyalinan urutan nukleotida yang terdapat pada molekul DNA. Dalam proses transkripsi, hanya salah satu untaian DNA yang disalin menjadi urutan nukleotida RNA transkip RNA. Urutan nukleotida pada transkrip RNA bersifat komplemeter dengan urutan DNA cetakan DNA template, tetapi identik dengan urutan nukleotida DNA pada untaian pengkode coding DNA strand/nontemplate strand. Hal ini dapat digambarkan dengan skema sederhana berikut ini 5’-ATG GTC CTT TAC TTG TCT GTA TTT -3’ Untaian DNA pengkode 3’-TAC CAG GAA ATG AAC AGA CAT AAA -5’ Untaian DNA cetakan Transkripsi 5’-AUG GUC CUU UAC UUG UCU GUA UUU -3’ RNA hasil transkripsi Perlu diingat bahwa pada struktur RNA tidak ada nukleotida T thymine, karena struktur T digantikan oleh U uracil. Nukleotida T dan U mempunyai cincin yang serupa yaitu cincin pirimidin, tetapi pada basa T ada gugus metil CH3 pada atom C nomor 5, sedangkan pada basa U tidak ada gugus metil. Secara umum proses transkripsi pada prokaryot berjalan serupa dengan transkripsi pada eukaryot, meskipun ada beberapa rincian proses yang berbeda antara kedua system tersebut. Pada prokaryot, transkripsi dimulai dengan penempelan RNA polimerase holoenzim pada bagian promoter suatu gen. pada awal penempelan, RNA polimerase masih belum terikat secara kuat dan struktur promoter masih dalam keadaan tertutup closed promoter complex. Selanjutnya, RNA polimerase akan terikat secara kuat dan ikatan hydrogen molekul DNA pada bagian promoter mulai terbuka membentuk struktur open promoter complex. Pada prokaryot, RNA polimerase menempel secara langsung pada DNA di daerah promoter tanpa melalui suatu ikatan dengan protein lain. Dalam proses penempelan promoter tersebut, subunit berperan dalam menemukan bagian promoter suatu gen sehingga RNA polimerase dapat menempel. Diduga, proses pengenalan suatu promoter oleh RNA polimerase diawali dengan penempelan enzim tersebut secara tidak spesifik pada molekul DNA. Selanjutnya, RNA polimerase akan mencari bagian DNA yang mempunyai struktur khas suatu promoter. Struktur khas tersebut berupa suatu kelompok ikatan hydrogen anatara kedua untaian DNA pada posisi -35 dan -10. kecepatan suatu polimerase dalam menemukan promoter diperkirakan mencapai pasangan basa per detik. Setelah RNA polimerase menempel pada promoter, subunit melepaskan diri dari struktur holoenzim. Pelepasan subunit biasanya terjadi setelah terbentuk molekul RNA sepanjang 8-9 nukleotida. RNA polimerase inti yang sudah menempel pada promoter akan tetap terikat kuat pada DNA sehingga tidak lepas. Ikatan ini sangat penting dalam proses transkripsi selesai. Inisiasi Transkripsi Tahapan proses inisiasi transkripsi meliputi 4 langkah yaitu 1 pembentukan kompleks promoter tertutup, 2 pembentukan kompleks promoter terbuka, 3 penggabungan beberapa nukleotida awal sekiatar 10 nukleotida, dan 4 perubahan konfirmasi RNA polimerase karena subunit dilepaskan dari kompleks holoenzim. Subunit tersebut selanjutnya dapat digunakan lagi dalam proses inisiasi transkripsi selanjutnya. Bagian DNA yang terbuka setelah RNA polimerase menempel biasanya terjadi pada daerah sekitar -9 sampai +3 sehingga menjadi struktur untai tunggal. Bagian DNA yang berkaitan dengan RNA polimerase membentuk suatu struktur gelembung transkripsi transcription bubble sepanjang kurang lebih 17 pasang basa. Setelah struktur promoter terbuka secara stabil, maka selanjutnya RNA polimerase melakukan proses inisiasi transkripsi dengan menggunakan urutan DNA cetakan sebagai panduannya. Dalam proses transkripsi, nukleotida RNA digabungkan sehingga membentuk transkrip RNA. Nukleotida pertama yang digabungkan hampir selalu berupa molekul purin. Kajian pada 88 promoter menunjukkan bahwa 51% molekul RNA diawali dengan basa A, 42% diawali dengan G, 5% diawali dengan C, dan 2% diawali dengan U. pada awalnya basa-basa RNA yang digabungkan membentuk ikatan hidrogen dengan basa DNA cetakan, sehingga jika urutan DNA cetakan adalah ATG, maka basa RNA yang digabungkan adalah UAC. Subunit mempunyai peranan dalam menstimulasi inisiasi transkripsi tetapi tidak mempercepat laju pertambahan untaian RNA. Proses inisiasi transkripsi merupakan prose yang menentukan laju transkrpisi. Inisiasi transkripsi dapat dihambat oleh pemberian antibiotic rifampisin, tetapi antibiotic ini tidak menghambat proses pemajangan transkrip. Penelitian yang dilakukan oleh Alfred Heil dan Walter Zilig pada tahun 1970 membuktikan bahwa subunit RNA polimerase yang menentukan kepekaan atau ketahanan terhadap antibiotik rifampisin adalah subunit β. Setelah proses inisiasi transkripsi terjadi, selanjutnya subunit terlepas dari enzim inti dan dapat digunakan oleh enzim inti RNA polimerase yang subunit tersebut pertama kali diungkapkan oleh Travers dan Burgess pada tahun 1969. Mereka menunjukan bahwa jika transkripsi berlangsung pada kekuatan ionic yang rendah, maka RNA polimerase inti tidak terlepas dari DNA cetakan pada ujung suatu gen. Hal ini menyebabkan inisiasi transkrisi berhenti. Jika ke dalam sistem tersebut dimasukkan RNA polimerase inti yang baru maka, transkripsi kemudian berjalan kembali. Keadaan ini menunjukkan bahwa RNA polimerase inti yang baru tersebut kemudian bergabung dengan subunit yang sebelumnya telah dilepaskan dari enzim RNA polimerase inti lainnya. Proses Pemanjangan Transkrip Pada bagian gelembung transkripsi, basa-basa molekul RNA membentuk hibrid dengan DNA cetakan sepanjang kurang lebih 12 nukleotida. Hibrid RNA-DNA ini bersifat sementara sebab setelah RNA polimerasenya berjalan, maka hibrid tersebut akan terlepas dan bagian DNA yang terbuka tersebut akhirnya akan menutup lagi. RNA polimerase akan berjalan membaca DNA cetakan untuk melakukan proses pemanjangan elogation untaian RNA. Laju pemanjangan maksimum molekul transkrip RNA sekitar anatara 30 samapai 60 nukleotida perdetik, meskipun laju rata-ratanya dapat lebih rendah dari nilai ini. Secara umum, berdasarkan atas nilai laju semacam ini, suatu gen yang mengkode protein akan disalin menjadi RNA dalam waktu sekitar satu menit. Meskipun demikian, laju pemanjangan transkrip dapat menjadi sangat rendah sekitar 0,1 nekleotida perdetik jika RNA polimerase melewati sisi jeda pause site yang biasanya mengandung banyak basa GC. Proses pemanjangan transkrip dapat dihambat oleh antibiotic streptoligin. Kepekaan atau ketahanan terhadap streptoligin juga ditentukan oleh subunit β pada RNA polimerase. Dalam pemanjangan transkrip, nukleotida ditambahkan secara kovalen pada ujung 3’ molekul RNA yang baru terbentuk. Nukleotida RNA yang ditambah tersebut bersifat komplementer dengan nukleotida pada untaian DNA cetakan. Sebagai contoh, jika nukleotida pada DNA cetakan adalah A, maka nukleotida RNA yang ditambahkan adalah U. Dalam proses pemanjangan transkrip ada dua hipotesis yang diajukan mengenai perubahan topologi DNA. Hipotesis pertama menyatakan bahwa enzim RNA polimerase bergerak melingkari untaian DNA sepanjang perjalananya. Dengan cara demikian maka dapat dihindari terjadinya pelintiran pada stuktur DNA, tetapi untaian RNA hasil transkripnya akan melintir sepanjang untaian DNA. Sebaliknya, hipotesis kedua menyatakan bahwa enzim RNA polimerase bergerak lurus sepanjang untaian DNA sehingga RNA yang terbentuk tidak mengalami pelintiran, tetapi untaian DNA yang ditranskripsi harus mengalami puntiran. Untaian DNA yang ada di depan RNA polymerase akan membuka sedangkan DNA yang berada di belakangnya akan memutir kembali untuk menutup. Dalam proses pemanjangan transkrip RNA, demikian juga pada proses inisiasi sintesis RNA, terjadi pembentukan ikatan fosfodiester antara nukleotida RNA yang satu dengan nukleotida berikutnya. Pembentukan ikatan fosfodiester tersebut ditentukan oleh keberadaan subunit β pada RNA polimerase. Transkripsi akan berakir pada saat RNA polimerase mencapai ujung gen yang disebut terminator. Pada bakteri E. coli ada dua macam terminator yaitu 1 terminator yang tidak tergantung pada protein rho rho-dependent terminator, dan 2 terminator yang tergantung pada protein rhorho-independent terminator. Pengakhiran Transkripsi yang Tidak Tidak Tergantung pada Faktor Rho Pengakhiran terminasi yang tidak tergantung pada rho dilakukan tanpa harus melibatkan suatu protein khusus, melainkan ditentukan oleh adanya suatu urutan nukleotida tertentu pada bagian terminator. Sinyal yang akan mengakhiri transkripsi dengan mekanisme semacam ini ditentukan oleh daerah yang mengandung banyak urutan GC yang dapat membentuk struktur batang dan lengkung stem-and-loop pada RNA dengan panjang sekitar 20 basa di sebelah hulu dari ujung 3’ –OH dan diikuti oleh rangkaian 4-8 residu uridin berurutan. Struktur batang lengkung tersebut menyebabkan RNA polimerase berhenti dan merusak bagian 5’ dari hibrid RNA-DNA. Bagian sisa hibrid RNA-DNA tersebut berupa urutan oligo rU yang tidak cukup stabil berpasangan dengan dA. Akibatnya ujung 3’ hibrid tersebut akan terlepas sehingga transkripsi berakhir. Eksperimen yang dilakukan oleh Peggy Farnham dan Terry Platt menunjukkan bahwa pengakhiran transkripsi tanpa melibatkan factor rho mempunyai 2 ciri utama, yaitu, 1 adanya rangkaian basa berulang-balik inverted repeat yang dapat membentuk lengkungan, dan 2 adanya rangkaian basa T pada untaian DNA bukan cetakan nontemplate strand sehingga membentuk pasangan basa yang lemah antara rU-dA yang menahan transkrip RNA pada untaian DNA cetakan. Pada waktu lengkungan RNA terbentuk, maka RNA polimerase berhenti dan ikatan basa yang lemah menyebabkan RNA yang baru terbentuk akan lepas. Pengakhiran Transkripsi yang Tergantung pada Faktor Rho Mekanisme pengakhiran transkripsi semacam ini memerlukan protein ρ rho. Pengakhiran transkripsi yang memerlukan faktor rho hanya terjadi pada daerah jeda yang terletak pada jarak tertentu dari promoter. Dengan demikian jika ada daerah jeda yang terletak di dekat promoter, maka daerah itu tidak dapat berfungsi sebagai daerah pengakhiran transkripsi. Terminator yang tergantung pada rho terdiri atas suatu urutan berulang-balik yang dapat membentuk lengkungan loop, tetapi tidak ada rangkaian basa T seperti pada daerah terminator yang tidak melibatkan faktor rho. Faktor rho diduga ikut teriakat pada transkip dan mengikuti pergerakan RNA polimerase sampai akhirnya RNA polimerase berhenti pada daerah terminator yaitu sesaat setelah menyintesis lengkungan RNA. Selanjutnya, faktor rho menyebabkan destabilitasasi ikatan RNA-DNA sehingga transkrip RNA terlepas dari DNA cetakan. MEKANISME TRANSKRIPSI PADA EUKARIOTIK Secara umum mekanisme pada eukariotik serupa dengan yang terjdi pada prokariotik. Proses transkripsi diawali diinisiasi oleh proses penempelan faktor-faktor transkripsi dan kompleks enzim RNA polimerase pada daerah promoter. Faktor transkripsi dibedakan menjadi dua kelompok, yaitu 1 faktor transkripsi umum, dan 2 faktor transkripsi yang khusus suatu gen. Faktor transkripsi umum mengarahkan polimerase ke promoter. Penempelan RNA polimerase pada promoter oleh faktor transkkripsi umum hanya menghasilkan transkripsi pada dasar basal level. Pengaturan transkripsi yang lebih spesifik dilakukan oleh faktor transkripsi yang khusus untuk suatu gen. Meskipun demikian, proses penempelan tersebut sangat vital bagi keberlangsungan proses transkripsi. Setelah faktor-faktor transkripsi yang umum dan polimerase menempel pada promoter, selanjutnya akan terjadi pembentukan kompleks promoter terbuka open promoter complex. Transkripsi dimulai pada titik awal transkripsi RNA initiation site, RIS yang terletak beberapa nukleotida sebelum urutan kodon awal ATG. Pada eukariotik terdapat tiga kelas gen, yaitu gen kelas I, gen kelas II, dan gen kelas III yang masing-masing dikatalisis oleh RNA polimerase dan faktor transkripsi yang berbeda. Proses transkripsi pada eukaryot Proses transkripsi secara umum Perbedaan Transkripsi Pada Prokariot Dan Transkripsi Pada Eukariot Transkripsi Pada Prokariot 1. Pada prokariot, gen terdiri atas 3 bagian utama daerah pengendali promoter; bagian struktural dan terminator. Promoter merupakan bagian gen yang berperanan dlm mengendalikan proses transkripsi dan terletak pada ujung 5’. Promoter pd prokariot juga terdiri atas operator. Bagian Struktural adalah bagian gen yang terletak disebelah hilir downstream dari promoter. Bagian inilah yg mengandung urutan DNA spesifik kode-kode genetik yg akan ditranskripsi. Terminator adalah bagian gen yg terletak disebelah hilir dari bagian struktural yg berperanan dlm pengakhiran terminasi proses transkripsi. Fungsi terminator adalah memberikan sinyal pd enzim RNA polimerase agar menghentikan proses transkripsi. Proses terminasi transkripsi pd prokariot dpt dikelompokkan menjadi 2 kelas, yaitu 1 terminasi yg ditentukan oleh urutan nukleotida tertentu rho-independent dan 2 diatur oleh suatu protein faktor rho atau disebut rho-dependent. 2. Gen pada prokariot diorganisasikan dalam struktur operon. Contoh operon lac operon yg mengendalikan kemampuan metabolisme laktosa pada bakteri Escherichia coli. Adanya sistim operon karena satu promotor mengendalikan seluruh gen struktural. 3. Saat ditranskripsi, operon lac menghasilkan satu mRNA yg membawa kode-kode genetik untuk 3 macam polipeptida yg berbeda mRNA polisistronik, artinya dalam satu transkrip dapat terkandung lebih dari satu rangkaian kodon sistron untuk polipeptida yang berbeda. Dengan demikian, masing-masing polipeptida akan ditranslasi secara independen dari satu untaian mRNA yg sama. 4. Ciri utama gen struktural pd prokariot adalah mulai dari sekuens inisiasi translasi ATG sampai kodon terakhir sebelum titik akhir translasi kodon STOP yaitu TAA/TAG/TGA akan diterjemahkan menjadi rangkaian asam amino. Jadi, jika gen struktural terdiri atas 900 nukleotida maka gen tersebut akan mengkode 300 asam amino karena satu asam amino dikode oleh tiga sekuens nukleotida yang berurutan. Jadi, pada prokariot tidak ada intron sekuens penyisip kecuali pada beberapa archaea tertentu. 5. Pada prokariot, RNA polimerase menempel secara langsung pada DNA di daerah promoter tanpa melalui suatu ikatan dengan protein lain yang membedakan dengan eukariot 6. Pada prokariot, proses transkripsi dan translasi berlangsung hampir secara serentak, artinya sebelum transkripsi selesai dilakukan, translasi sudah dpt dimulai. 7. Urutan nukleotida RNA hasil sintesis adalah urutan nukleotida komplementer dengan cetakannya. Misal urutan ATG pada DNA, maka hasil transkripsinya adalah UAC. Molekul DNA yg ditranskripsi adalah untai ganda, namun yang berperanan sebagai cetakan, hanya salah satu untaiannya 8. Tahapan transkripsi pada prokariot meliputi 1 inisiasi transkripsi terbentuk gelembung transkripsi, 2 pemanjangan 3 terminasi tergantung faktor rho dan tidak tergantung faktor rho Transkripsi pada eukariot 1. Gen eukariot dibedakan 3 kelas yaitu Gen kelas I meliputi gen-gen yg mengkode 18SrRNA, 28SrRNA dan 5,8SrRNA ditranskripsi oleh RNA polimerase I; Pada gen kelas I terdapat dua macam promoter yaitu promoter antara spacer promoter dan promoter utama. Gen kelas II meliputi semua gen yg mengkode protein dan bbrp RNA berukuran kecil yg terdpt di dlm nukleus ditranskripsi oleh RNA polimerase II; Promoter gen kelas II terdiri atas 4 elemen yaitu sekuens pemulai initiator yg terletak pd daerah inisiasi transkripsi, elemen hilir downstream yg terletak disebelah hilir dari titik awal transkripsi, kotak TATA dan suatu elemen hulu upstream Gen kelas III meliputi gen-gen yg mengkode tRNA, 5S rRNA dan bbrp RNA kecil yg ada di dlm nukleus ditranskripsi oleh RNA polimerase III. Sebagian besar gen kelas III merupakan suatu cluster dan berulang 2. Tidak dikenal adanya sistim operon karena satu promotor mengendalikan seluruh gen struktural. 3. Gen pada eukariot bersifat monosistronik artinya satu transkrip yg dihasilkan hanya mengkode satu macam produk ekspresi satu mRNA hanya membawa satu macam rangkaian kodon untuk satu macam polipeptida. 4. Pada gen struktural eukariot, keberadaan intron merupakan hal yang sering dijumpai meskipun tidak semua gen eukariot mengandung intron. 5. Mekanisme transkripsi pada eukariot pada dasarnya menyerupai mekanisme pada prokariot. Proses transkripsi diawali diinisiasi oleh proses penempelan faktor-faktor transkripsi dan kompleks enzim RNA polimerase pd daerah promoter. RNA polimerase eukariot tidak menempel secara langsung pada DNA di daerah promoter, melainkan melalui perantaraan protein-protein lain, yg disebut faktor transkripsi transcription factor = TF. TF dibedakan 2, yaitu 1 TF umum dan 2 TF yg khusus untuk suatu gen. TF umum dalam mengarahkan RNA polimerase II ke promoter adalah TFIIA, TFIIB, TFIID, TFIIE, TFIIF, TFIIH, TFIIJ. 6. Pada eukariot, proses transkripsi dan translasi tidak berlangsung secara serentak. Transkripsi berlangsung di dalam nukleus , sedangkan translasi berlangsung di dlm sitoplasma ribosom. Dengan demikian, ada jeda waktu antara transkripsi dengan translasi, yg disebut sebagai fase pasca-transkripsi. Pada fase ini, terjadi proses 1. Pemotongan dan penyambungan RNA RNA-splicing; 2. Poliadenilasi penambahan gugus poli-A pada ujung 3’mRNA; 3. Penambahan tudung cap pada ujung 5’ mRNA dan 4. Penyuntingan mRNA 7. Gen eukariot mempunyai struktur berselang-seling antara sekuens yang mengkode suatu urutan spesifik ekson dan sekuens yg tidak mengkode urutan spesifik intron.
hasil transkripsi dna adalah rna struktural yaitu